CROSS ASSEMBLER
FOR THE MCS-48 FAMILY

Produced by
Mumford Micro Systems

Box 400, Summerland, CA 93067
(805) 969-4557

o 8048 CROSS ASSEMBLER #

. TABLE OF CONTENTS *
FERARRARERRERRRERRERRARRRERRE

Inhroduction...2

Section

Section

Section

Section

Appendix
Appendix
Appendix
Appendix

1

1.
1.
1.
1.
1.
1.

U W N -

Source Format..ceeeesessssessssscscsccccsaseasensssnnsd
Creation of a source fil€.sevieseccsseceresessennnssssd
The label fieldisseesssssavesscscasnscnosnsssnsnsasnssl
The opcode field..eeeesesavsssoncasessccanssanenssanseld
The operand fieldiseesisceeceeacessssnesssssncassaanssld
The comment field

L L L L Ty R,
EXamPleS.ceesssesseasesscnnasnnsonensssanssessssnsanns

Running The ASSembler...eeess semeesisssiesesmedsspiedd
Input File speeifioationcevevisesiveeesaes e vessisssd
itpit file ‘specificatioficiuiseviinnsnsssnieavissiesd
SWILCheB suuwesuessviomaseonisaassssasssnismeiennsseeed

Output file format...ceeeeeureeccecscsrcarsacccnnceaensb

EXamMDPleS.cuseeeeesscssnssncssssscanscssnssssasasssannnal

Assembler FUBotLoNs. ce v v snsasevse is sesassiissens
SYRBOLS,wvewis avensmiaiasslisv iR e S e e
Nulheris) constantBwvevesaisassivevesssmiisoihspinemaot]
Character constantS..eescescssccscesscscscasconosnsnas]
Location counmter referenCe...veescecessescecescesesased
Arithmetic, Boolean, and relational operatorsS.........8

PBOUAO=0BS o o 0 wnimannn omabmmnnminm e s s s s sesmed
DB 3550 00 i i e R R R W e e O
DS5ia s nm0minwie ninimin sigiome e aen e o6 68 6iee 0 e s w s e ae s
Dl o wrvrmwnre sgnis ersmiswasimss sms e diessssse e vl
BB o wossiass wnwimanediansEsmee s seissem s ssvisamealo
ENDTF vsiv aiejoraiajacnin sivio 6o s ws 5700 0incm b icnmea-nemnmes e e ol
ELSE. iisniinsvsvnivasasi
EQUuicucccceroscrnsnonsaansssosnsnoesasananosssasnsasell
FILL.............§...................................11
T G0 aimimcn mia o miwse i e a5 e e e e e e e T
LIST s aioiuiminie wainie
MICRO

ORGuwwymissismmieie v sinimae e bnsses SR e s ey waiamesem sl 3

tessssesrscstrentnsenrsnssesansll

R R T R I S Pt -1

T A PPt I
PAGE. svsrwnsnvwsevasviessmsanasnssns usssvinsssessiseseld

Instruction Set SUMMArY.....ceeeeeveeencensnanasessaalll
Instruction Mnemonics and OpcodeS.eeeeseveceeacoesneal]
Error MesSsagel..essssssevsssassssensenanssoessiisssiesdd
Sample I/0 and Math Routines.....ccceeiiiuiivenenessa25

Page 1

Introduction

This B048 Cross Assembler supports the the Intel MCS-48 family of single chip
microcontrollers, which includes a large number of individual components. The
MCS-45 family contains five basic groups, each characterized by slightly
different instructions sets. This assembler will support all groups and their
respective instructions with a pseudo-op to declare which set is desired. In
addition, the assembler includes a large number of other pseudo-ops for symbol
definition, value storage, conditional assembly, and listing control. It
supports standard Intel mnemonics, and includes a full set of arithmetic,
logical, and relational operators. Other features include complete expression
evaluation, ten significant characters for symbols, and informative error
messages. ‘

Source for the assembler may be generated by just about any text editor which
will create an ASCII file. Each line must end with a carriage return, except
that & line feed may follow. The source file should not contain line numbers or
any contrcl characters other thar carriage return, line feed, and tab. Source
files are assembled directly from disk to an object file on disk. Several
switches may be specified when invoking the assembler which affect listing,
symbel table generation, and error display.

It is beyond the scope of these instructions to serve as a programming manual
for MCS-48 family, but more information on these chips may be obtained in the
Inte! Component Data Catalog, the Intel Microcontroller User's Manual, and the
Intel Microcontroller Applications Handbook, as well as data sheets on the
individual components. Literature may be ordered from Intel at the following
address: -

Intel Corporation
Literature Department SV#-3
3065 Bowers Avenue
Santa Clara, CA 95051

The one component in the MC3-48 family that will be of most interest to the
hobbyist or experimenter is probably the 8TU48. This is a single chip
microcomputer with 1024 words of EPROM memory, 64 bytes of RAM memory, 27 I/O
lines, an 8 bit timer/counter, and an internal clock oscillator in a single
package. It is ideally suited to many control applications that previously
would have required many separate components for the processor, program memory,
RAM, I/0 ports, clock, and address decode logic.

Microcontrollers in this family have found wide useage in many "smart" computer
peripherals such as printers, modems, and keyboards, as well as in more mundane
consumer appliances like microwave ovens and washing machines, With the
availability of a disk-based cross assembler for the 8048 family that will run
on the popular TR5-80 Models 1, 3, and 4, it becomes possible for the hobbyist
and experimenter to use these readily available and inexpensive components in
their own individual dedicated controller applications from phone dialers and
print spoolers to solar energy controllers and burglar alarms. Many such
projects will require little more than a five volt power supply, an 8748, and a
few switches and passive components.

Page—z

ectio - Soure rma

1.1 Creation of a source file

The assembler is designed to assemble from a text file which has been
previously written with a text editor. There are many word processors available
for the TRS-80, and probably any of them will generate an acceptable source
file. The source file should contain only ASCII characters, and program lines
should not be numbered. Each source line will have four basic fields, though
all fields may not be needed on each line. Fields may be separated with a
single space, multiple spaces, or tabs.

1.2 The label field

The left-most field is the label field. If a label is used on a line, it must
begin with the first character on that line. Labels may contain upper-case
letters, lower-case letters, numbers, the underline character, a question mark,
or the "at" sign (@). Lower-case letters are considered distinct and different
from upper-case letters. The first character of a label may not, however, be a
number. Labels may be up to ten characters in length and all characters are
significant, If desired, labels may end with a colon which can also serve as a
field delimiter for the label field.

1.3 The opcode field

The second field in a source line is the opcode field. A summary of legal
opcodes for the various groups in the MCS-48 femily is given in Appendix A.
Opcodes must be entered in upper-case characters to be recognized by the
assembler. Some opcodes will require an operand in the next field, and some
opcodes stand alone. -

1.4 The operand field

The third field in a source line is the operand field. This field includes any
registers referenced by the instruction in the opcode field and any symbols,
constants, or expressions required by the opcode. A complete listing of the
operands required for each instruction is given in Appendix A. When the operand
is an immediate numeric value, arithmetic expressions may be used. Symbols
which reference labels or symbols which are equated elsewhere may also be used.

1.5 The comment field

The right-most field in the source line is the comment field. Actually, the
comment field may begin anywhere in the scurce line, but it must always begin
with a semicolon, and everything which follows the semicolon will be considered
a comment and will be ignored by the assembler.

Page 3

les
The following lines are typical source lines for the assembler:

SYMBOL OPCODE OPERAND COMMENT
START MOV A,10 ;comment
START: DB 'This is a test!
ABCDEFG:EQU START+22
JMP EXIT j;comment field can be anywhere to right of operand
PRTDRV: ;label with no opcode
CALL PRINT H
;STORAGE AREA
MOV A,(VALUE1+VALUE2) AND MASK

In general, the source file will begin with an ORG pseudo-op (see Section 4.12)
followed by ‘the body of the program, and terminate with the END statement (see
Section 4.Y4). Once the source file has been written and saved on disk, it is
called into the zssembler on the "command line"™ when the assembler is run.

Page 4

e

ctio] - i he Assemb

The name of the assembler is CASM/CMD. The command line used to run the
assembler has the general form:

CASM INPUT [OUTPUT] [-LSTPE] <ENTER>

The first word, CASM, is required. It is the name of the assembler, and when
the computer encounters it in the command line the assembler is loaded into
memory and begins to run. :

file specifica
The second .word, INPUT, represents the name of your source file. It might
really be INPUT, or it might be CONTROL, or TEST/SRC:1, or any other valid
filespec you have used for your source file. This is the file which CASM will
read and try to assemble into an "object file". You must specify an input file
so the assembler will know what to assemble, If no input file name is given, an
error message will be generated.

22 Q P11 ifi
The third word, OUTPUT, is in brackets because it is optional. It represents
the filename you want to give the object file generated by the assembler. The
object file is the assembled program created by the assembler which will be
programmed into the 8748 (or any other microcontroller you are writing for).
You do not have to create an object file every time you run the assembler,
however. If you just want to assemble your source to check for errors, or to
generate a listing, don't specify an output file name. If no output filename is
given in the command line, no output file will be generated. The output

filename may be any valid filespec. It might really be OUTPUT, or it might be
CONTROL/OBJ, or TEST/ROM:2.

es

The forth expression on the command line is also in brackets because it too is
optional. This expression contains the "switches" you might use to give further
instructions to the assembler. Switches tell the assembler how you want it to
display the assembly. There are four legal switches, and if any one of them is
used it must be preceeded by a hyphen (-). If more than one switch is
specified, it may be separated from the preceeding one by a space, a comma, a
tab, or nothing at all. The legal switches are:

- Display a listing of the assembly.

- Display the symbol table.

= Truncate the object listing to one line per instruction.

- Route the listing, error messages, or symbol table to
the line printer.

E - Halt the listing after each error is displayed.

(Hit <ENTER> to resume)

B I 7

The default values are no listing, no symbol table, don't truncate object
listing, output to the video screen, and don't halt after errors. Illegal
switches will generate an error message and assembly will be aborted.

Page 5

2.4 Object file format

When an output file has been specified on the command line the assembler will
generate a object file on disk. This object file will be a series of bytes
which represent the actual object code for the microcontroller., This file is
not an Intel hex file or a Radio Shack command file. It is just the bytes
needed by the microcontroller to execute as a program, Once this file has been
created, it is up to the user to program them into the particular chip they
will be run in. Different programmers have different requirements., If your
programmer needs a hex file, you will need to generate one from the binary data
file created by this assembler. If you built the programmer described in the
plans which are available from Mumford Micro Systems, it came with software
which is ready to run on the binary file created by this assembler.

2.5 Examples :

The last word in the sample command line, <ENTER>, means that you have to hit
the ENTER key after typing the previous characters. The following examples will
help clarify the various ways of calling up the assembler:

CASM FILE1

This command will get the input file FILE1, assemble it, and list any errors on
the video screen. No source listing will be displayed and no output file will
be generated.

CASM FILE1 -L

This command will get the input file FILE1, assemble it, and list it and any
errors on the video screen.

CASM FILE1:1 FILE2 -P

This command will get the input file FILE1 from drive 1, assemble it, write the
assembled code to the output file FILE2, and list any errors on the printer.

CASM FILE1 FILE2 -LSTPE

This command will get the input file FILE1, assemble it, list it on the
printer, print the symbol table on the printer, truncate any multiple byte
instructions in the source to a single line in the listing, halt the display
after each error message is printed, and write the-assembled object code to the
output file FILE2. . '

Page 6

—_— e e e pee— —

t = Assembler Functio

o

Symbols (or labels) in the assembler can be up to 10 characters in length and
may include any upper-case letter, any lower-case letter, any number, an
underline character, a question mark, or an "at™ sign (@). The first character,
however, must not be a number. If your computer can generate lower-case
characters, they are considered as different characters than upper-case ones.
The label "LOOP", therefore, is distinet and different from "Loop"™ and "loop",

and all three are legal symbols. The following words are all legal symbols and
labels:

LOOP . testpoint Loop99 €HERE UH_WHAT? AB?6_Z THIS_T00??

eric cons ts

The assembler will accept numeric constants in decimal (base 10), hexadecimal
(base 16), binary (base 2), or octal (base 8). The default base, or RADIX, is
decimal. All other numbers will require a "radix specifier", These specifiers
are single letters which must follow any number which is not in the default
base (decimal). They are "D" for decimal (yes, it is redundant and unnecessary,
but it is allowed), "H" for hexadecimal, "Q" for octal, and "B" for binary.
Hexadecimal numbers that begin with a letter must be preceeded with a zero to
tell the assembler that they are not symbols. The following numbers are
examples of the possible formats:

2124 hexadecimal
234Q octal
11110000B binary
OFEFEH hexadecimal
10D decimal
1234 decimal

Character co nt

Character constants are used like numeric constants except that they are
specified as an ASCII character in single quotes instead of as a specific
number. The assembler will take the !ASCII value of the characters in quotes to
use in its operations. Double characters may be used to represent 16 bit
values, Since the single quote character is used as a delimiter it becomes a
little awkward to use the single quote as a character itself. To get around
this difficulty, the assembler will interpret two single quotes together as the
single ASCII character "single quote" instead of as two delimiters. The
following are examples of legal character constants:

"A' = W1H
"AB' = H142H
tene = 2TH

Page 7

il my

3.4 Location counter reference

The dollar sign may be used to represent "the current location in memory™ for
numeric expressions. This is perhaps best explained by example. In the sample
source below, the assembler has assembled object code through address 00TTH
when it encounters an instruction with a dollar sign in the operand field. The
next available (or current) address is 0078. The dollar sign will be taken to
mean the number 0078 when the expression "$-9" is evaluated, resulting in the
value 6DH.

ADDRESS OBJECT CODE OPCODE OPERAND
0075 0A IN A, P2
0076 77 RR A
0077 7 RR A
0078 * EF6D DJNZ $-9

Arithmetic, Boolean, and logical ope r

CASM has many arithmetic, logical, and relational operators which can be used
in numeric expressions. The characters used to represent these operators are
defined below:

Arithmetic Operators
+ ==> Addition
= ==> Subtraction
--> Multiplication
/ ==> Division
¢ or MOD =--> Modulus (remainder of division)
4+ ==> Unary plus (indicates a number is positive)
- ==> Unary minus (indicates a number is negative)

Boolean Ope ors

| or OR =--> Logical OR

“ or XOR =-=> Logical XOR

& or AND ==> Logical AND

~ or NOT ==> Unary logical negation

elational ators
> ==> Greater than
{ ==> Less than
= ==> Equal to
>= —=> Greater than or equal to
<z ==-> Less than or equal to
1= —=> Not equal to

e f evaluatiops ece e
Unary + Unary - NOT (Highest precedence)
L / MOD
+ =
< <= > = = 1=
AND
OR XOR (Lowest precedence)

Up to 4 levels of parentheses can be used to change precedence.

Page 8

P

e e e pee—

Section 4 - Pseudo-Ops

Instructions which are accepted by the assembler but are not part of the
instruction set of the microprocessor are called "pseudo-ops". They are
instructions for the assembler as opposed to instructions for the
microprocessor, Some pseudo-ops require an argument, and some stand alone. The
pseudo-ops accepted by this assembler are shown below. In the examples
following each pseudo-op, the left-most column represents the actual code
generated by the instruction (in hexadecimal), the next column is the
pseudo=-op, the third column is the argument (if any), and the last column is a
comment describing the meaning of each line.

H’ DE o .

Define Byte. This instruction places specific numeric values in the object
file. It requires an argument which can be a specific number, a string
delimited by single quotes, or an arithmetic expression. Commas can be used to
define several bytes on one line,.

1A DB 1AH s SINGLE DEFINITION

41 41 41 41 DB 'AAAAT yMULTIPLE CHARACTERS WITHIN STRING
0Cc 01 DB 12,5-4 ;MULTIPLE ARGUMENTS WITH COMMAS

8D - DB HIGHBIT+CR sARITHMETIC EXPRESSION

Define Storage. This instruction reserves a number of memory locations for
storage. Admittedly, in a ROM-based application like the 8048 family, a define
storage pseudo-op is of questionable value. The memory locations which are
reserved with this instruction are not left unaltered, however. They are filled
with the current value of the "fill character", which is defined under the
pseudo-op FILL (see below)., This feature allows the programmer to set all
unneeded bytes in the object file to the unprogrammed state for the
microprocessor. This feature allows a HEX file (required by some EPROM
programmers) to be generated from the object file that will define every memory
location, yet not program locations that are uneeded.

The argument of the DS pseudo-op is a 16 bit expression, so it may be any
number or expression that evaluates ito a number in the range 0 to 65535.

00 00 DS .5 ;RESERVES 5 BYTES
00 00 ;CURRENT FILL CHARACTER IS 00
00

Page 9

4,3 DW

Define Word. This instruction defines two bytes to be placed in the object
file., The argument of this operator can be a specific number, an arithmetic
expression, or a two character string delimited with single quotes. Commas may
be used to define several words on the same line. Note that bytes are not
placed in reverse order in the object file, as is the case with assemblers for
some microprocessors (like the Z80).

01 02 DW 0102H ;SPECIFIC VALUE
02 04 ¥1 42 DW 0204H, 'AB" ;NOTE THE DOUBLE CHARACTER STRING
02 33 Dw START-END '16 BIT ARITHMETIC EXPRESSION

The END statement tells the assembler that the end of the source file has been
reached. Source files must end with this statement or a NO END FOUND error will
be generated. Also, there should be no text following the END statement or the
error message DATA FOUND AFTER END will be displayed. The END statement does
not require an argument.

END ;END OF PROGRAM

4,5 ENDIF

The ENDIF pseudo-op is used to terminate a conditional assembly segment. The
segment is initiated with the pseudo-op IF, which is described below. All
conditional assembly segments which have been initiated with the IF statement
must be terminated with the ENDIF statement or the error message IF WITHOUT
MATCHING ENDIF STATEMENT will be displayed. When there are multiple nested IF
statements, ENDIF will terminate the last IF statement which was encountered.
The ENDIF pseudo-op does not require an argument.

FLAG1 EQU 1 ;DEFINE FLAG1 AS TRUE
IF FLAG1 = 1 s INITIATE CONDITIONAL
96 29 JNZ EXIT ;CODE GENERATED IF FLAG1 IS TRUE
ENDIF ;END OF CONDITIONAL
4.6 FLSE

The ELSE pseudo-op is used to toggle conditional assembly following a IF
statement (see IF pseudo-op below). IF statements do not require an ELSE, but
one is allowed where it is convenient. The effect of the ELSE statement is to
allow the assembler to generate code for the instructions which fall between
the ELSE statement and the ENDIF statement when the argument of the original IF
condition is false (equal to zero). The ELSE statement must be preceeded by an
IF statement or the error message ELSE WITHOUT MATCHING IF STATEMENT will be
displayed. The ELSE pseudo-op does not require an argument.

FLAG1 EQU 0 ;DEFINE FLAG1 AS FALSE
IF FLAG1 ; INITIATE CONDITIONAL
JMP EXIT1 ;CODE NOT GENERATED - FLAG1 IS FALSE
ELSE ; TOGGLE CONDITIONAL
o4 3F JMP LOOP ;CODE IS NOW GENERATED
ENDIF ; TERMINATE CONDITIONAL SEGMENT

Page 10

prm— e o r—— e, p— g] r—— — — r— —

f
L

4.7 EQU

Equate symbol. The EQU pseudo-op creates a symbol with a defined value, The EQU
statement is preceeded by the symbol you wish to create and followed by an
argument which defines the value of the symbol. The value of the argument must
be known on the first pass of the assembler or an error message will be
displayed. The symbol may be followed by a colon, a space, or a tab.

CR: EQU 13 ;DEFINE CR AS THE VALUE 13 DECIMAL
BIGNUM EQU 9080H ;DEFINE BIGNUM AS THE VALUE 9080H
ABCDEFG:EQU 13H - 3DEFINE ABCDEFG AS THE VALUE 13 HEX

0D DB CR ;NOW STORE THE VALUE OF CR

90 80 DW BIGNUM ;STORE THIS VALUE

00 13 . DW ABCDEFG ;STORE THIS VALUE

4,8 FILL

The FILL pseudo-op defines the character that is used as a filler for areas of
memory that are not defined. FILL requires an argument which is the new value
of the FILL character. The FILL character is used to pad memory between the
last location used during assembly and a subsequent ORG statement, and the
memory locations reserved by a DS (define storage) pseudo-op. In addition, when
running the CP/M version of this assembler, any characters needed to fill out
the last sector of the object file will be the current FILL character.

The default value of the FILL character is zero. The use of a fill character is
convenient in that it allows you to choose a character that represents the
unprogrammed condition of the ROM you are writing for. This allows you to write
code that will skip over previously programmed areas, or leave areas
unprogrammed which you may wish to use later. The 8048 family of
microprocessors use zero as the unprogrammed condition for all ROM locations.

00 00 DS 4 ; DEFAULT FILL CHARACTER IS ZERO

00 00 .
FILL OFFH ;DEFINE OFFH AS THE FILL CHARACTER

FF FF FF DS 3 ;DEFINE STORAGE FILLED WITH NEW VALUE

Page 11

The IF statement 1s used to initiate conditional assembly. It requires an
argument which is evaluated as true or false. If the argument evaluates as a
number which is not zero, it is considered true. If the argument evaluates to
zero, it is considered false.

If the argument of an IF statement is true, the assembler will generate code
for the instructions which follow, unless an ELSE statement is encountered. If
an ELSE is encountered, the assembler will ignore the instructions which follow
it and generate no code until an ENDIF statement is encountered.

If the argument of the initial IF statement evaluates as false, the
instructions which follow it will be ignored and no code will be generated
until an ELSE or ENDIF statement is encountered, at which time the assembler
will once again begin to generate code.

IF statements may be nested up to 255 deep. If this limit is exceeded, the
error message CAN'T NEST MORE THAN 255 IF STATEMENTS will be displayed. All IF
statements must be terminated with an ENDIF statement or the error message IF
WITHOUT MATCHING ENDIF will be displayed.

FLAG EQU 1 sDEFINE FLAG AS TRUE
IF FLAG=1 ;BEGIN CONDITIONAL
14 69 - CALL RDRAM ;GENERATE CODE - CONDITION IS TRUE
04 oD JMP POLALL ;GENERATE CODE - CONDITION TRUE
ELSE 3 TOGGLE CONDITIONAL

CALL POLCOMP ;NO CODE GENERATED
JMP NOTFUL ;NO CODE GENERATED
ENDIF ‘s TERMINATE CONDITIONAL

T
The LIST pseudo-op is used to control the assembly listing. LIST requires an
argument, and if the argument evaluates as false (zero), the assembly listing
will be supressed. If another LIST statement is encountered with a true
(non-zero) argument, the assembly listing will resume. The default condition
for LIST is on, or true.

ON EQU 1 ;DEFINE ON AS TRUE
OFF EQU 0 ;DEFINE OFF AS FALSE
LIST ON ;LISTING IS TURNED ON (TRUE ARGUMENT)
14 69 CALL RDRAM ;
o4 oD JMP POLALL ;
LIST OFF ;LISTING IS TURNED OFF (FALSE ARGUMENT)

Page 12

e pe— p— p— p— — T e mm— — — e

e e ey pween e p—— p—

4,11 MICRO

This statement allows you to define which microprocessor in the MCS-48 family
you are writing for. MICRO 1s followed by an argument which determines the
instruction set that will be used by the assembler., The legal arguments, with
the microprocessors they support, are shown below:

8048 - 8048, 8748, BTUBH, BTL9, BOMY9, 8TP50, BOSO
Bo41A - BOu1A, 8Tu1A, 8042, BTA2

8022 =~ 8022

8021 - 8021

The defualt mode for the assembler is 8048, which includes the 8TUB and is the
component most likely to be used by the hobbyist or experimenter.

MICRO 8048 ;GENERATE CODE FOR AN 8048 OR 8748
MICRO 8022 ;GENERATE CODE FOR AN 8022

This statement sets the program orgin. It is followed by an argument which is
the address at which you want to begin assembly of the instructions which
follow, If there are multiple ORG statements, each one must have an argument
that is greater than the location already reached by the assembler or the error
message CAN'T ORG BACKWARDS, ORG IGNORED will be displayed and the ORG will be
ignored. If there are undefined memory locations between an ORG statement and
the memory location reached by previously assembled instructions, the assembler

will generate FILL characters (see Section 4.8) for each undetermined memory
location.

ORG 0 ;BEGIN ASSEMBLY AT ADDRESS 0

ol 06 JMP ENTRY ;JUMP TO LOCATION 6
00 00 3FILL CHARACTERS GENERATED BETWEEN ORGS
00 00 i
ORG 6 ;BEGIN ASSEMBLY AT ADDRESS 6
23 oC MOV A,12 ;PROGRAM CONTINUES HERE
3A OUTL P2,A
4,13 PAGE

This statement sends a formfeed character to the printer if the listing has
been directed to the printer. It requires no argument, it generates no object

code, and it sends one formfeed character to the printer every time it is
encountered.

46 4F NOTFULL JNT1 POLCOMP

14 69 CALL RDRAM

14 57 CALL WRTPRNT

04 oD JMP POLLALL

PAGE ;FORMFEED SENT TO LINE PRINTER HERE

26 OD POLCOMP JNTO POLLALL

08 INS A,BUS

A8 MOV RO, A

14 88 CALL WRTRAM

04 0D JMP POLLALL

Page 13

endi = Instruction Se a

The list which follows contains the instructions for all members of the MCS-48
family. The list includes the opcode, the operand, a brief description of the
instruction, and an indicator as to which microcontrollers each instruction

will work with. Each lettered column represents a group of chips, assigned as
follows:

A=8048, 87u8, 8049, BT49 - B=80OU1A - C=8041 - D=8022 - E=8021
Opcode Operand Description A B C D E
ADD A, #data Add immediate to A ¥ X X X X
ADD A,Rr - Add register to A (r=0-T) X X X X X
ADD A,EéRr Add data memory to A (r=0-1) ¥ X X X X
ADDC A, {data Add immediate with carry X X X X X
ADDC A,Rr Add register with carry (r=0-7) I X ¥ X X
ADDC A,BRr Add data memory with carry (r=0-1) X X X X X
ANL A, {#data And immediate to A X X X X X
ANL A,Rr And register to A (r=0-T) X X X X X
ANL A, 8Rr And data memory to A (r=0-1) X X X X X
ANL BUS, #data And immediate to BUS X
ANL Pp, #data And immediate to port (p=1-2) I X X
ANLD Pp,A And A to expander port (p=U4-T) X X X X X
CALL addr Call subroutine X ¥ X X X
CLR A Clear A X X X X X
CLR c Clear carry flag ¥ X X X X
CLR FO Clear flag 0 X X X
CLR F1 Clear flag 1 X X X
CPL A Complement A X ¥ X X X
CPL C Complement carry flag X X X X X
CPL FO Complement flag 0 X X X
CPL F1 Complement flag 1 X X X
DA A Decimal adjust A X X X X X
DEC A Decrement A X X X X X
DEC Rr Decrement register (r=0-7) X X X
DIS 2 Disable external interrupt X X X X
DIS TCNTI Disable timer/counter interrupt X X X X
DJNZ Rr,addr Decrement register and jump (r=0-=7T) X X X X X
EN DMA Enable DMA handshaking lines X
EN FLAGS Enable master interrupts X
EN 1 Enable external interrupt X X X X
EN TCNTI Enable timer/counter interrupt X X X X
ENTO CLK Enable clock output on line TO X
IN A,DBB Input DBB to A, clear IBF X X
IN A, PO Input port 0 to A X X
IN A,Pp Input port to A (p=1=2) X X X X X
INC A Increment A X X X X X
INC Rr Increment register (r=0-7) I X ¥ X X
INC 6Rr Increment data memory (r=0-1) X X X X X
INS A, BUS Input BUS to A X

Page 14

Opcode Operand Description A B C D E
JEb addr Jump on accumulator bit (b=0-T) X XX

Jc addr Jump on carry flag = 1 ¥ X X X X
JFO addr Jump on FO flag = 1 X X X

JF1 addr Jump on F1 flag = 1 X X X

JMP addr Jump unconditional X X X X X
JMPP an Jump indirect X X X X X
JNC addr Jump on carry flag = 0 X X X X X
JNI addr Jump on external interrupt = 0 X

JNIBF addr Jump on IBF flag = 0 X X

JNTO addr Jump on TO = 0 X X X X
JNT1 addr Jump on T1 = 0 X X X X
JNZ addr Jump on A not Zero X ¥rX I X
JOBF addr . Jump on OBF flag = 1 X X

JTF addr Jump on timer flag = 1 X X X X X
JTO addr Jump on TO = 1 X X X X
JT1 addr Jump on T1 = 1 X X X X

JZ addr Jump on A Zero X X X X X
MOV A,#data Move immediate to A X X X X X
MOV A,PSH Move PSW to A X X X

MOV A,Rr Move register to A (r=0-7) X ¥ X X X
MOV A,BRr Move data memory to A (r=0-1) X X X X X
MOV A,T Read timer/counter X X X X X
MOV PSW,A Move A to PSW X X X

MOV Rr, A Move A to register (r=0-T) X X X X X
MOV Rr,#data Move immediate to register (r=0-7) X ¥ X X X
MOV €Rr, A Move A to data memory (r=0-1) X X X X X
MOV 6Rr, #data Move immediate to data memory X X X X X
MOV STS, A A4-A7 to bits 4=7 of status X

MOV T,A Load timer/counter X X X X X
MOVD A, Pp Input expander port to A (p=i-7) X X X X X
MOVD Pp,A Output A to expander port (p=4=7) X X X X X
MOVE A,@A Move to A from current page X¥ X X X X
MOVP3 A,6A Move to A from page 3 X X X

MOVX A,BRr Move external data memory to A (r=0-1) X

MOVX Rr,A Move A to external data memory (r=0-1) X

NOP No operation X X X X X
ORL A, #data Or immediate to A X X X X X
ORL A, Rr Or register to A (r=0-7) X X' X X X X
ORL A,BRr Or data memory to A (r=0-1) X X X X X
ORL BUS, #data Or immediate to BUS X

ORL Pp,itdata Or immediate to port (p=1-2) X X X

ORLD Pp,A Or A to expander port (p=4=7) X X X X X
ouT DBB, A Output A to DBB, set OBF X X

OUTL BUS,A Output A to BUS X

OUTL PO,A Output A to port 0 X X
OUTL Pp,A Output A to port (p=1-2) X X X X X

Page 15

Opcode Operand Description A B C D E
RAD Move conversion result to A X
RET Return from CALL X X X X X
RETI Return from interrupt X
RETR Return and restore status X X X

RL A Rotate A left X X X X X
RLC A Rotate A left through carry flag ¥ X X X X
RR A Rotate A right X X X X X
RRC A Rotate A right through carry flag ¥ X X X X
SEL ANO Select analog input 0 X
SEL AN1 Select analog input 1 X
SEL MBO Select memory bank 0 X

SEL MB1 Select memory bank 1 X

SEL RBO Select register bank 0 X X X

SEL RB1 Select register bank 1 X X X

STOP TCNT Stop timer/counter X X X X X
STRT CNT Start counter X X X X X
STRT T Start timer X X X X X
SWAP A Swap nibbles of A X X X X X
XCH A, Rr Exchange A and register (r=0-7) X X X X X
XCH A,8Rr Exchange A and data memory (r=0-1) X X X X X
XCHD A,€Rr Exchange nibble of A and data memory ¥ X X X X
XRL A, #data Exclusive or immediate to A X X X X X
XRL A,Rr Exclusive or register to A (r=0-T7) X X X X X
XRL A,8Rr Exclusive or data memory to A (r=0-1) X X X X X

Page 16

e m— — — —

s P — e — — —— —_— e, e ——— ———— e,

Appendix B - Instruction Mnemonics and Opcodes

The following listing is an assembly of a source file which was written to test
the assembler by using every instruction and all addressing modes. This
printout is also an example of the listing format of the assembler. The left
hand column shows the address, followed by the opcode(s). The right hand two
columns are the instruction mnemonics.

;instructions for the 8048

MICRO 8048
H]

0000 68) ADD A, RO
0001 69 ADD A,R1
0002 6A . ADD A,R2
0003 6B ADD A,R3
000y 6C ADD A,RY
0005 6D ADD A,R5
0006 6E ADD A, R6
0007 6F ADD A,RT
0008 60 ADD A, 6RO
0009 61 ADD A, 6R1
000A 0355 ADD A, #55H
oooc T8) ADDC A, RO
000D 79 ADDC A, R1
000E TA ADDC A, R2
000F 7B ADDC A,R3
0010 T7C ADDC A, R4
0011 7D ADDC .A,RS
0012 TE ADDC A,R6
0013 T7F ADDC A,R7
0014 70 ADDC A, 8RO
0015 71 ADDC A, 6R1
0016 1355 ADDC A, #55H
0018 58 ANL A, RO
0019 59 ANL A, R1
0014 5SA ANL A, R2
001B 5B ANL A,R3
001C 5C ANL A, RY
001D 5D ANL A, RS,
001E SE ANL A, RE
001F 5F ANL A, RT
0020 50 ANL A, 8RO
0021 51 ANL A, 6R1
0022 5355 ANL A, #55H
0024 9855 ANL BUS, #55H
0026 9955 ANL P1,#55H
0028 9455 ANL P2,#55H
002A 9C ANLD Ph,A
002B 9D ANLD P5,4A
002C 9E ANLD P6,A
002D 9F ANLD P72
002E 1455 CALL 55H
0030 BY45S CALL 555H

Page 17

0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
0o03C
003D
003E
003F
0040
0041
0042
0043
0044
0045
00l6
oou48
00LA
004C
004E
0050
0052
0054
0056
0057
0058
0059
0054
005B
005C
005D
005E
005F
0060
0061
0062
0063
0064
0065
0066
0067
0069
006B
006D
006F
0071
0073
0075
0077

CLR

TCNTI

RO,55H
R1,55H
R2,55H
R3,55H
RY,55H
R5,55H
R7,55H

TCNTI
CLK
A, P1
A, P2

RO
R1

R3
R4
RS
R6
R7
6RO
eR1
A, BUS
55H
55H
55H
55H
55H
55H
55H
55H
55H

Page 18

—r — —n v [p—pe— r— e, s] r——— e T —— sm—) — —

0079
007B
007D
00TF
0081
0082
0084
0086
0088
008A
008C
008E
00g0
0092
0094
0096
0097
0098
0099
0094
009B
009cC
009D
009E
009F
0040
ooa
0042
00A3
00 A4
00A5
0046
00AT
0048
00A9
00AA
00AB
00AD
00AF
00B1
00B3
00B5
00BT
00B9
00BB
00BC
Q0BD
00BF
ooc
oocz
00C3
coch
00Cs
00C6

MOVD
MOVD
MOVD
MOVD
MOVD

55H
55H
55H
555H
A
55H
55H
55H
55H
55H
55H
55H
55H
55H
A, #55H
A, PSH
A, RO
A, R1
A, R2
A,R3
A, RY
A, RS
A, RE
A, RT
4, €R0
A, 6R1
AT
PSW, A

-RO,A

R1,A
R2,A
R3, A
Rb, A
R5, A
R6,A
R7,A

RO, #55H
R1,#55H
R2,#55H
R3, #55H
R, #55H
RS, #55H
R6 , #55H
R7,#55H
6RO, A
8R1, A
8RO, #55H
8R1, #55H
T, A

A, P4

A, P5
A,P6
a,PT
Py, A

Page 19

00CT
oocs
00C9
ooca
00CB
oocc
00CD
00CE
00CF
00D0
ooD
oop2
00D3
00DY
00D5
00D6
00D7
ooD8
00D9
CODA
00DB
00DD
00DF
00E1
00E3
OOEY
00E5
00E6
00ET
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0
00F1
00F2
00F3
OOF4
00F5
00F6
00FT
00F8
00F9
00FA
00FB
00FC
00FD
OOFE
00FF
0100

3D
3E
3F
A3
E3
80
81
90
91
00
48
L]
LA
4B
4c
4D
LE
4F
4o
41
4355
8855
8955
8455

8D
8E
8F
02
39
3A
83
93

F7
7
67

F5
C5
D5
65
45
55
47
28
29
2A
2B
2C

2E
2F

ACH
XCH
XCH
XCH

PS5, A
P6, A
PT,A
A,EA
A, @A
A, 8RO

=3
(]
=-}
-

™
o o
30
- -
= =

. w o w ow w e e e

P S N i

™ P
TERBAFEIRZE
- O

A, #55H
BUS, #55H
P1,#55H
P2,#55H
P4, A
P5,A
P6,A
P7,A
BUS, &
P1,A
P2,A

_..
TRRFRIRES

D N N
(=]

- % w = -

Page 20

PR

0101

0102
0103
0104
0105
0106

0107
0108
010§
0104
010B
010C
010D
010E

0110
0111
0112
0113
0115
0117
0118

0119
0114
011B
011C

011D
011E

€33C
6699
0001
0001
0001
0001
0001
007B
0096
0141
0305
1234
011F
0053
5352

E5
F5
22
D655
8655
90
02

80
93
85
95

08
90

XCH A, 6R1
XCHD A,6RO0
XCHD A,B8R1
XRL A, RO
XRL A, R1
XRL AR2
XRL A,R3
XRL A, Rl
XRL A, RS
XRL A,R6
XRL A,RT
XRL A, 6RO
XRL A,6R1
XRL A, #55H

: :
;jinstructions for the 8041A
MICRO 80414

EN DMA
EN FLAGS
IN A,DBB
JNIBF 155H
JOBF 155H
MOV STS, A
ouT DBB, A
1
;instructions for the 8022
MICRO 8022
RAD
RETI
SEL ANO
SEL AN1
1
jinstructions for the 8021
MICRO 8021
IN A, PO
OUTL PO, A
; e
H Expressions
’
STAN EQU 0C33CH
FRED EQU 6699H
L1 EQU 1
L2 EQU 1B
L3 EQU 1D
Ly EQU 1Q
L5 EQU 1H
L6 EQU 123D
LT EQU 10010110B
L8 EQU 321D
L9 EQU 773
L10 EQU 1234H
L11 EQU $
L12 EQU sy
L13 EQU 'SR

Page 21

5327
2753
C33C
FFFE
FFFE
FEE1
3CCy
FFAD
ACAE
FF34
FFFD
0002
ETBD
ETED
A5A5
4218
29D5
5CA3
8678
619E
003C
FFFF
0000
FFFF
0000
0000
0000
FFFF
0000
FFFF
0000
FFFF
0000
FFFF
FFFF
FFFF
ooco
C33C
C33C
€33C
0012
000E
000E
0000
0001
0000

L4
L15
L16
L17
L18
L19
L20
L21
L22
L23
L2y
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L2
L43
Lyy
L45
L46
L47
L48
L4g
L50
L51
L52
L53
L5y
L55
L56
L58
L59
L6O

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

IS!!!
"'S'
STAN
-2
-2
-$
-STAN
_ISI
_ISR!
-11001100B
NOT 2
+2
STAN OR FRED
STAN | FRED
STAN XOR FRED
STAN AND FRED
STAN + FRED
STAN - FRED
STAN * 2
STAN / 2
STAN MOD 100H
STAN = STAN
STAN = FRED
STAN > FRED
FRED > STAN
STAN > STAN
STAN < FRED
FRED < STAN
"STAN < STAN
STAN >= FRED
FRED >= STAN
STAN >= STAN
STAN <= FRED
FRED <= STAN
STAN <= STAN
STAN 1= FRED
STAN != STAN
(STAN)
(STAN)
(CC(sTAN))))
3% (4 +2)
(3% 4) +2
34+ 2
0 / STAN
STAN / STAN
1 / STAN
Page 22

— —— . T e T

e - Err essa
Branch out of page boundary - An attempt has been made to do a conditional jump

into another page.

Byte value truncated - An attempt has been made to use a 16 bit value where an
8 bit value is required.

Can't ORG backwards, ORG ignored - An ORG statement has been used which
specifies an address lower than that which has already been reached by the
assembler (see Section 4.12).

Can't nest more than 255 IF statements - An attempt has been made to use more
than 255 unterminated IF statements simultaneously (see Section 4.9).

Can't open INPUT file - The source file does not exist or a disk I/0 error has
occurred.

Can't open QUTPUT file - The disk is write protected or a disk I/0 error has
occurred.

Data found after END - The END pseudo-op is not the last statement in the
source file (see Section 4.4).

Disk CLOSE error - A disk I/0 error has occurred while closing the output file.
Disk WRITE error - A disk I/0 error has occurred while writing the output file.

Division by zero - An expression has been evaluated to a condition where a
number is being divided by zero.

Doubly defined label - An attempt has been made to define the same label more
than once.

ELSE without matching IF statement - An ELSE statement has been encountered
without a previously defined IF statement (see Sections 4.9 and 4.6).

ENDIF without matching IF statement - An ENDIF statement has been encountered
without a previously defined IF statement (see Sections 4.9 and 4.5).

IF without matching ENDIF statement - An IF statement has not been terminated
by an ENDIF before the end of the source file was encountered (see
Sections 4.9 and 4.5).

Illegal label - An attempt has been made to use a label which does not meet the
conditions defined under Section 3.1.

Illegal number - An attempt has been made to use a number which is either too
large or contains illegal characters (see section 3.2).

Input file not specified or illegal - The command line does not contain a
properly specified source file name (see Section 2.1).

Page 23

Invalid opcode - The instruction is not valid for the processor defined by the
MICRO pseudo-op. See Appendix A for a list of valid opcodes.

Invalid operand - The operand is either missing, illegal, or specified
incorrectly for the preceeding instruction (see Section 1.4 and Appendix
A).

Invalid short string - A syntax error has occurred during the specification of
a single or double byte character constant (see Section 3.3).

Invalid string - An uneven number of delimiters has been used when defining a
string (see Section 3.3).

Invalid switch - A syntax error has occurred in the switch portion of the
command line (see Section 2.3).

No END found - No END pseudo-op was found at the end of the source file (see
Section 4.4).

Out of symbol table memory - There is insufficient memory to perform the
assembly.

Parentheses nested too deep - An attempt has been made to have more than four
levels of parentheses open simultaneously.

Parentheses uneven - An expression has been used which contains an open
parenthesis without a matching closed parenthesis,

Phase error, value changed on pass 2 - The value of a symbol determined on the
first pass of the assembler is not the same as the value arrived at on the
second pass.

Ran out of memory during symbol table sort - There is insufficient memory to
perform the assembly.

Stack overflow - An expression has been used which cannot be evaluated.

Symbol not defined on pass 1 - A symbol has been used which references a label
which was not defined on the first pass of the assembler.
§
Undefined symbol - An instruction references a label which has not been defined
elsewhere in the source.

Page 24

e p— e e e— ——

S232

The de

4w ws s b ws we ws ws we we

T
Bd9600
Bd1200
Bd300
H

H
;jcall to
H

H

H
Serln
SerInl
SerIn2

H
SerlIn3

H
SerInly

e = e at e

AR R R AR R R AR AR R R RN RN RN R R AR RN

* E 3
® Serial I/0 and Math routines *
® ®

AR R R R R RN R R R R R RN AR AR R RN R R E RN R R R R RS

EQU 000010008 ;serial output bit on port 2

lay constant for serial data rate is computed with:
t = (400,000 / BAUD - 24) / 6

EQU . ((40000 / (9600 / 100) +5) / 10 = 24) / 6
EQU ((40000 /7 (1200 / 100) +5) / 10 - 24) / 6
EQU ((40000 7 (300 / 100) +5) / 10 - 24) / 6

read a byte from serial port, data input on T1
Enter: RO' = delay constant
Exit: A = byte

RT,RT' = undefined

MOV R7,#8 sjread in 8 bits

JNT1 SerIni swait till line goes high

JT1 SerIn2 swait till line goes low
CALL H1fDly jwait for half a bit

JT1 Serln -3branch if start bit missing
CALL BitDly2 ;jdelay for one bit

JNT1 SerInl jbranch if data bit low

CLR c ;jclear the carry

CPL (57

RRC A ;jrotate the data into A

DJNZ RT,SerIn3 ;der bit count, test for done
RET

CLR c ;set the carry bit

NOP ;keep the timing right

RRC A ;jrotate the data into A

DJINZ R7,SerIn3 jder bit count, test for done
RET

Page 25

Enter:

Exit:

erQut MOV

wa (/) e e e we

ANL
CALL

’

SerOut1 RR
JB7

H
ANL
JMP

H
SerOQut2 ORL
JMP

’

SerQut3 CALL
DJNZ

H
ORL
CALL
RET

call SerOut to set a byte out the serial port

A = byte to be sent
RO' = delay constant
A = byte sent out
R7,R7' = undefined

R7,#8

P2,#7RS232
BitDly1

A
SerQut2

P2,#7RS232
SerQut3

P2,#RS232
SerQut3

BitDly3
RT,SerQuti

P2,#RS232
BitDly1

;transmit 8 bits

;send the start bit
;jdelay for 1 bit time

;jrotate to get next bit
;branch if bit is a one

;set the bit low
;set the bit high
;keep the timing straight

;jdelay cne bit time
;g0 do next bit if not done

;send the stop bit
;delay one bit time

call to delay one serial bit time
RO' = delay constant

Exit:
itDly1 NOP
NOP
BitDly2 NOP
NOP
BitDly3 NOP
NOP
NOP
NOP
SEL
MOV
MoV
BitDly4 NOP
NOP
NOP
DEC
JNZ

H
i
'
H Enter:
3
B

MOV
SEL
RET

R7! = undefined

BitDlyh

A, RT
RBO

;delay for 8 cycles first
;delay for 6 cycles first

;delay for 4 cycles first

;select second register bank
;save A in RT!

;get the time delay constant
;delay loop time = 6 cycles
snops delay for 3

;dec the loop counter
;loop till done

jrestore A
;select first register bank

Page 26

— p— p— —

call to delay a half serial bit time

1
H Enter: RO' = delay constant
H Exit: RT' = undefined
H1fDly SEL RB1 ;jselect second register bank
MOV R7,A ;save A in R7!
Mov A, RO jget the time delay constant
]
7+ H1fDly1 DEC A ;dec the loop counter
JNZ H1fDly1 ;loop till done
1
MoV A, RT jrestore A
SEL REO yselect first register bank
RET '
H
H ——
; Math Utilities
; -
1
jcall to do a double subtraction
; Enter: R1,R2 = Minuend, R1 = B
: R3,RY4 = Subtrahend, R3 = MSB
$ Exit: R3,RY4 = difference, R3 = MSB
3 R1,R2 = Minuend, R1 = MSB
Subtret MOV A, R2 jsubtract R4 from R2
CPL A
ADD A, RY
CPL A
MOV R4, A ;put difference in RY
MoV ARl ., 3subtract R3 from R1
CPL A
ADDC A,R3 ;include carry from above
CPL A
MoV R3,A ;put difference in R3

RET

Page 27

jcall to do a 8 x 16 multiply, product 24 bits

H Enter: R1 = multiplicand #1
] R2,R3 = multiplicand #2, R2 = MSB
3 Exit: R4,R5,R6 = product, R4 = MSB
H R2,R3 = multiplicand #2, R2 = MSB
; R1,R7T = undefined
Mul tply MOV RY, #0 ;jstart with a total of 0
MoV R5,#0
MOV R6, #0 ;LSB
?
MoV R7,#8 ;jmultiply all 8 bits
Mult1 MOV A, R6 ;double the product
CLR c
RLC A jrotate the low byte
MOV - R6,A
MOV A,R5 ;rotate the middle byte
RLC A
MOV R5,A
MOV A, RY jrotate the high byte
RLC A
MOV R4, A
1
MOV A, R1 ;shift multiplicand
CLR C
RLC A
Mov R1,4
JNC Mult2 ;if high bit 0 don't add on
1
MOV A, R6 jadd multiplicand to product
ADD A,R3 ;add low bytes
MoV R6, 4
MOV A, RS ;add middle bytes
ADDC A, R2
Mov k5,4
MoV A, RY ;add on carry to high byte
ADDC A, #0
MoV R, A
’
Mult2 DJNZ RT ,Mul t1 ;g0 multiply next bit
RET ;all done ‘

Page 28

mam e — — —— e fr—)) et T —) —] —_—

'
:
H
L
H
H
D

ivide

Divi

-

Exit:

MoV
MOV
Mov

MOV
CPL
INC
MOV

MOV

MOV
CLR

MOV
MoV
RLC
MOV
MOV
RLC
MOV

MoV
ADD
JNC

MOV
INC

MoV
CLR

MoV
Mov
RLC
MoV
MOV
RLC
MOV

DJNZ

RET

call to divide a 24 bit number by a 8 bit one
Enter:

R4, R5, R6 = dividend, R4 = MSB

R3 = divisor

RO, R1, R2 = quotient, RO = MSB

R4, R5, R6 = remainder # 2, R4 = MSB
R3,R7T = undefined

RO, #0 ;start with quotient = 0
R1,#0

R2,#0

A,R3 ;negate divisor

P

3R3 = -divisor

16+1 ydivide 24 bit number
;shift quotient left once
yquotient = quotient # 2
;shift the low byte

grory g=-
By

A

L

A, R1 ;shift the middle byte

A

R1,A

A, RO ;yshift the high byte

A

RO, A

A,R3 jsubtract divisor from dividend
A,RY 4dividend bits 23 - 16

Div2 ;jmp dividend[23=16] < divisor
RU,A ;Div[23-16]=Div[23-16]-divisor
k2 ;set bit in quotient

A, R6 ;shift dividend left once

c jdividend = dividend * 2

A ;shift the low byte

R6, A

A, RS ;shift the middle byte

A

R5,A

A, RY ;shift the high byte

A

RL,A

R7,Div1 ;g0 divide next bit

Page 29

call to negate a 16 bit number

’

3 Enter:

3 Exit:

Negate MOV
CPL
ADD
MOV
MOV
CPL
ADDC
MOV
RET

R2,R3 = binary # to negate, R2 = MSB
R2,R3 = negated number

A,R3 ;get the low byte

A ;jinvert it

A, jincrement it

R3,A ;R3 = low byte

A,R2 ;get high byte

A ;invert it

A, #0 ;add carry from before
R2,A ;R2 = high byte

;call to convert a 16 bit number to a 4 digit BCD number

H

H

’

’

- Enter:
H Exit:
]

CnvBed MOV
MOV

MOV
CnvBed1 MOV
CLR
RLC
Mov
MoV
RLC
MOV

MOV
ADDC
DA
MOV
MOV
ADDC
DA
MOV
DJNZ

-

MoV
Mov
MOV
MOV
RET

R3,R4 = binary # to be changed to BCD, R3 = MSB
R3,R4 = number in BCD, R3 = MSB
R5,R6,R7 = undefined

RS, #0 ;zero the U4 digit BCD array
R6 , #0

R7,#16 ;econvert & 16 bit number
A, RY 3shift the binary number left
c ;first the low byte

A

RU, A

A,R3 sthen the high byte

A :

R3,A

A, R6 ;jdouble low BCD # + carry
A,R6

A ;decimal fix it

R6,A ;save the new BCD value

A, R5 jdouble high BCD # + carry
A, RS

A jdecimal fix it

R5,A ;save the new BCD value
R7,CnvBed1 ;80 stick on next bit of #
A, RS ;put result in R3 & R4
R3,A

A, R6

RU, A

Page 30

